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A semiquantum Fokker-Planck equation for spin-velocity 
relaxation of gas particles 

L V Il’ichov 
Institute of Automation and Electrometry SB RAS. Novosibirsk State University, Novosibirsk, 
630090, Russia 

Abstract. A model Fokker-Planck kinetic equation is postulated which describes coupled spin- 
velocity relaxation of test panicles immersed in a buffer gas. The proposed model accounts for 
specific parts of the friction force (‘Magnu’-type and ‘sailing’4ype) to which a spinning lest 
panicle is subjpcted. Special attention is paid,to the ‘Magnus phenomenon’ in the case of 
spin-half particles. Some curious thermodynamic aspects are discussed. 

1. Introduction 

In an earlier work (Il’ichov 1991a) the following Fokker-Planck equation was proposed: 

a, P(U,  s, t )  = v o v  . (v + 3*V) P ( W ,  s, t )  

+ V l V . ( W  x s ) p ( w , s , t ) + v z ( s . V ) [ ( w . s ) + i , 2 ( S . V ) ]  p ( v , s , t )  (1) 
where i, is the mean thermal velocity and V the symbol of the velocity derivative. It 
was expected to describe the velocity relaxation under some conditions of heavy spinning 
particles immersed in an atmosphere of a light buffer gas. The essential properties of the 
model are as follows. The test particles cany semiclassical internal angular momentum 
(spin) J = J s  which has quantized magnitude, J but continuous (classical) orientation 
s (Nasirov and Shalagin 1981). Collisions are assumed to change neither the spin value 
J nor its direction s. In other words the test particles are heavy rapidly rotating tops. In 
addition, J is assumed to be the same for all test particles. As a result the subensemble of test 
particles, specified by s, relaxes independently of particles with other spin directions. Being 
unaffected by collisions, the spin direction modifies the character of the velocity relaxation. 
This is reflected in the second line of (1). The term cx V I  accounts for phenomenon related 
to the classical Magnus effect, the deviation of the trajectory of a rotating flying body due 
to the Magnus force FM cx (V x Q), where V is the velocity of the body, and Q is its 
angular velocity. The process behind the term c( vz accounts for the various mobilities of an 
aligned particle along the alignment axis and in the transverse direction. This phenomenon 
has a classical counterpart in sailing motion. The quantum ‘Magnus phenomenon’ and the 
‘sailing phenomenon’ firstly followed from the analysis of gas dynamic equations derived 
from the WaldmannSnider quantum kinetic equation (Gel’mukhanov and Il’ichov 1985). 

In equation (1) these phenomena reveal themselves at the classical kinetic level. 
Equation (1) is a generalization of the well known model of weak collisions-the first 
line in (1) (see, e.g., McCourt eral 1990). As one can easily verify, this generalization is 
unique if we allow the drift term of the generalized equation to be linear with respect to 
w and the diffusion term be independent of velocity. Strong reasons for these constraints 
were presented by Rautian (1991). 
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As we have already stressed, the model, based on (I), considers the test gas as a 
mixture of independent subcomponents specified by 8 E S2. This limitation is a sequence 
of the semiclassical approach to angular momentum. In reality any change of velocity in the 
course of a collision is accompanied by some spin deorientation. In the present paper we are 
going to propose a quantum modification of (1). which accounts for this deorientation. We 
have no reason to revise the classical nature of translational motion. All modifications will 
concern spin which should be considered in a purely quantum way. The v-dependent spin 
density matrix B(v, t )  will take the place of p ( v ,  8, t )  in the proposed modification of (1). 
This is the main distinctive property of our model in comparison with others based on a 
purely quantum line of attack (Haken 1969, Morozov 1981). Starting from known quantum 
kinetic equations, these authors derived generalized Fokker-Planck equations for c-number 
representatives of statistical operators. We are going to move in another direction-from 
the classical equation (1) to a semi-quantum equation using the correspondence principle. 
In this point our approach is in some respects closer to that of Schra" etal (1985), where 
a classical Langevin equation is extended to the quantum domain through a modification 
of the guiding stochastic process. This method seems the most applicable to translational 
motion, whereas we deal with the coupling of classical translational motion and quantum 
rotation. 

2. Semiquantum Fokker-Planck equation 

The main object of the present paper will be the following generalization of (1): 

8, j(v, r)=Vj { ujAjj [ ,?(U, r)] + i?Vj Btj [,?(U, t ) ] }  + (non-deriv. terms) (2) 

where the velocity distribution ,?(U, t )  is at the same time a statistical operator in the spin 
space of the test particles; Ajj and Bjj are superoperators in spin space and at the same 
time are tensors in velocity space. The non-derivative terms will be discussed later. 

Bij is evidently symmetric tensor: 

(3) B.. - B.. 
' I  - I' 

whereas Ajj may have both symmetric and antisymmetric parts 

Keeping in mind the correlation between equations (1) and (2). we expect the 'Magnus 
phenomenon' to be generated by A;i and the 'sailing phenomenon' by A:j. 

There is a relation between A;j and Bij which follows from the equilibrium condition. 
We assume the derivative as well as the nonderivative operators give zero when acting on 
the equilibrium distribution ,&(U) = & W ( v ) ,  where W(v) is the Maxwellian distribution 
in velocity space; the operator bq is proportional to the identity operator E(') in every 
J-spin subspace. Substituting & ( v )  in (2), we arrive at the following relation: 

4 j l j r A 1  = Bij[ WqI. (5) 
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We postulate the simplest form of dij and E, which allows the reduction of (2) to (1) 
in the classical limit and preserves the Hermitian character of the statistical operator: 

d!.?’[C] ZJ = a0Sijj + f a t ’  [ ( j ; $  + $&) f i  + j @? + j c 4 ) ]  

+ a y ( $ @ $  + $aj,) 
A r ’ [ j ]  1J =&i jW(a l jk~+a ; j j~ )+ ia~~’ ( j i j $  -$a&) (6)  

+biz) + A j i i )  

B$’[ j ]  = b0Sijj + 4 b!) [ (&jj  + .fjji) p^ + a  @& + ji4)) 

where ao. a!), a?), af’, bo, b, (1) , b, (2) are real quantities and a1 = ai + ia; is complex. All 
these quantities have a phenomenological nature in our context. It follows from (5) that in 
every Jsp in  subspace 

(7) 
Note that we use only the terms of the first and the second degree with respect to the angular 
momentum operators & (i = 1,2,3). The simplest non-derivative term of the same kind is 

y ( 2 j , & , - j = g - P ^ I z ) / 2 . ~  (8) 
The non-derivative 

term describes isotropic destruction of the coherence between Zeemann sublevels due 
to collisions. In the derivative term (equation ~(2)) the relaxation of spin orientation is 
unseparable from the velocity relaxation, because the result of a collision depends on the 
relative orientation of w - J (KuSEer er a1 1981). The superoperator term, dij[a(v, t)]uj,  
plays the role of the ith component of a friction force &(w) which a test particle with 
velocity v is subjected to. To be more precise we write 

where ei (i = 1,2,3) are the unit orthonormal vectors of the laboratory coordinate system. 
After cyclic permutation of operator factors under the trace the superoperator dij can be 
written as the friction force operator which was introduced by Bloemink er a1 (1994). An 
equation similar to (9) relates Bij[ b(w, t ) ]  to an anisotropic diffusion coefficient in the 
velocity space. 

Let us compare equation (2) where dij and Bij are determined by (6) with the classical 
equation (1). There are no problems with identification of terms responsible for the ‘sailing 
phenomenon’; these terms are proportional to a!) and @. A different situation arises 
with the ‘Magnus phenomenon’. : Note that only the term & ,U; in (6) is akin to the 
corresponding classical term in (l), whereas the terms a ‘af and ai3) have no classical 
counterparts because they are conditioned by non-commutativity of operators. Further still, 
we should not consider the term x d3) to be related to the ‘Magnus’-type force. This 
term is bilinear in J ,  but it is evident from common physical reasons that the ‘Magnus 
phenomenon’ must be odd with respect to J .  The uncertain status of the term x a;) will 
he clarified in the next section by the simpler example of spin-half particles. 

(ao - bo) i ( ’ )  6.. I J - (  - b“’ 2 +b?) - a$ - $1) pj. ’ I  + j . j . )  I“ 

In the context of our model no change of J takes place. 

F d w ) T r j ( w .  r )  = T r ( e i d i j [ j ( w , r ) l u j )  (9) 

3. The case of spin-half particles 

Let us consider the case of spin-half test particles. Their statistical operator is as follows: 

B(w, 0 = (Po(v, 2 )  + P k ( W U ,  0 a) /z (10) 
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where & (k = 1,2,3) are the Pauli matrices, and po(v, t )  and pk(v, t )  are the velocity 
distribution of the test particles and the distribution of the kth component of their orientation 
(mean spin vector), respectively. 

The model of spin-half particles can describe the ‘Magnus phenomenon’, but not the 
‘sailing phenomenon’. The latter is conditioned by alignment (by a second rank tensor with 
respect to spin variables), but alignment does not exist in spin-half system. 

By equations (2),(6) we have 

This equation states the well known identity of transport collision rate (the LHS of (12)) to 
that appearing in the velocity space diffusion coefficient. Now we are going to compare 
the quantum ‘Magnus phenomenon’ with its classical counterpart. The term cx v1 in (1) 
accounts for it. Using equation (I), we derive the following equation for the gas-dynamic 
flux with definite spin direction: 

a, j ( s ,  t )  = - v 0 m  r) + v I ( s  x AS, t ) )  - vzs (S . j ( s ,  t)) (13) 

j(s, f )  vp(v, s, t )  d3u. (14) 

where 

s 

s 
J 

We see that the ‘Magnus phenomenon’ resulk in the precession of j(s, t )  around s with the 
angular velocity V I .  As was shown by Gel’mukhanov and Il’ichov (1985) and by Il’ichov 
(1990b) the quantum ‘Magnus phenomenon’ manifested itself as a collisional coupling of 
the ordinary flux of particles j&): 

jo( t )  v po(v, t )  d3u (15) 

and the flux of orientation j ~ ( t ) :  

j , ( t )  (v x p(v, t ) )  d3u. (16) 

From (1 I )  we get 
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where 

u(O0) a0 + u:”/2 + 4 ) / 2  
(1) 

(18) 
u ( l l ) ~ a ~ + a 2  / 2 - 4 ) + a :  
u ( ~ ~ )  + a:3)/2 
u(l0) = -2(aj -$)/Z). 

We see that uf) appears along with ai in the collision rates ~ ( 0 1 )  and u(l0) responsible for 
the coupling. This is rather strange. To clarify the situation one should invoke the Onsager- 
Casimir reciprocal relations (Il’ichov 1990b) which, on being applied to  the ‘Magnus 
phenomenon’, give u(l0) = -2u(01). Therefore a;) = 0 and the corresponding term 
in (6) must be eliminated. 

We see from (IS) that if 2a; # U?) the transport collision rate.u(l1) for oriented 
particles is not equal to the ordinary transport collision rate ~(00). For simplicity we 
assume a?) = b f )  = U$ = 0 and arrive at the following equations: 

(19) 

where IJO ao + a f ) ,  V I  - a;; ut from (19) should not be confused with u1 from (1). The 
terms cx uo on the right-hand side~of~(15) describe an irreversible velocity relaxation (an 
Ornstein-Uhlenbeck process). The term with y is responsible for the collisional decay of 
the orientation and has irreversible nature too. At the same time, in spite of their collisional 
origin, the terms cx U I  in (15) describe the reversible Magnus process which is invariant 
under the transformation 

a,po(v, t )  = u0v. (w+ i 2 V ) p 0 ( w , t )  + ut (v x w )  . p ( u , t )  

a,p (v,t) = vo[v. (v+ a2v)]p(w,t) + vI (V x w)pO(w,t) - rbcv, r) 

(20) 
PO(V, t) -, PO(-V, - t )  
p (w. t )  -+ - p  (-v, -0. 

The main advantage of the differential equations (19) compared with the more rigorous 
model based on integro-differential WaldmanSnider equation (Gel’mukhanov and Il’ichov 
1985) is their solvability. The solution to (19) is presented in the appendix. 

4. Does the quantum ‘Magnus phenomenon’ ‘violate’ the second law of 
thermodynamics? 

We are going to propose a suitable Lyapunov functional for the system (19). We consider 
the following functional: 

H ( t )  = W-’(w) (p&, t )  +p* (v ,  t ) )  d3u (21) 1 
where p(v, t )  is the length of the orientation vector p (w, t ) .  It is easy to show that the 
time derivative H ( r )  is negative: 

f i ( t )  = -2u0 /” w-l(w )[ (5 v po(w, t )  + po(u, t )> 
2 
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The well known argument (van Kampen 1984) proves that the evolution described by (19) 
tends to equilibrium: po(w, t )  + W(w), p (w, f )  -+ 0. 

It is significant that the 'Magnus phenomenon' makes no contribution to H(t). The 
idea that no reversible process should contribute to any sensible H-function determined the 
choice of the functional (21). 

One naturally wonders if the H-function (21) is unique for the system (15). We can try 
the free energy of the test gas (its definition being due to von Neumann (1955)) 

F( t )  = T  Tr$(v,t) I n [ $ ( ~ , f ) / W ( w ) ] d ~ u  (23) s 
where T is the buffer gas temperature. In (23) we assume 

/ Tr,?(w, t )  d3u = 1. (24) 

Using the basis of spin state vectors which diagonalized the statistidoperator $(w, t )  (this 
basis may depend on the velocity), one can prove that F ( t )  2 0. In the case of spin-half 
particles we have (up to an additive constant): 

The time derivative k(t) has the following components: 
. .  

= [F(f)lfr + [F(t)ldifi+ [F(t)ldce +["(as". (26) 
As was shown by Gardiner (1985), the first term in (26) (the friction term a VO) is zero, 
and the second (the diffusional term a VO) and third (the decay term c( y )  are negative. 
After some manipulation we arrive at 

(27) 
where n ( w ,  I) = p (v, t ) / p ( w ,  1 ) .  The term in the square brackets is positive and the sign 
of the expression (27) is determined by the term W .  [ V x n ( w ,  I)]. By preparing the state 
of the gas in a proper way we are able to make the integral (27) positive. As has been 
shown above, the test gas will definitely come to equilibrium. However, the dissipation 
of the free energy of the test gas is not to be monotonous. If [F(t)]hlasn is positive and 
dominates, the total time derivative F ( t )  will also be positive at an initial stage of evolution. 
The specific gas states which demonstrate such behaviour are conditioned by a non-trivial 
velocity dependence of the orientation vector. 

5. Conclusion 

We have proposed a model which describes coupled spin-velocity relaxation of a test 
gas in an atmosphere of a buffer gas. In spite of the phenomenological character of our 
approach, it seems capable of accounting for the 'Magnus' and 'sailing' phenomena which 
find their origin in the rigorous model (Gel'mukhanov and Il'ichov 1985). Equations (2)  
and (8)  exhibit a similarity with those arising in the theory of quantum Markovian processes 
(Gardiner 1985). 
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The ‘Magnus phenomenon’ for spin-half particles was considered in more detail. It 
turns out that not all proposed phenomenological terms in Aij are allowed because of 
constraints imposed by the Onsager-Casimir reciprocal relations. Equations (19) admit a 
time-dependent solution, which can be used in the construction of a new kinetic model (see 
the appendix). 

The situation 
suggests two explanations: (i) the proposed model is pathological, or (ii) a defect is 
contained in the definition of F ( t )  (23). One may prefer the first alternative because 
the model described was postulated, and no systematic rigorous derivation was presented. 
Nevertheless, we should note that the derivation of equations (15) is possible. It starts 
from the Waldmann-Snider kinetic equation using the method similar to that of Kramers 
and Moyal (Moyal 1949). This fact supports the hope that the general quantum Fokker- 
Planck equation (2) for higher spin values is also a useful model. This derivation and 
some possibilities for the second alternative will be discussed elsewhere.  we^ considered 
the relaxation of spin orientation in the framework of the su(2) algebra of angular 
momentum. In principle, extending su(2) to the Lie algebra of the metaplectic group 
M p  (4, R) 3 SU(2), one can account for the inelastic J-J transitions, as will also be 
shown elsewhere. 

~~ Spin-velocify relaxation of gas particles 

The result of section 4 contrasts with the conventional H-theorem. 
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Appendix 

It is useful to introduce the conditional probability 

1 
Q(W. S,  t l ~ o ,  so, 0) = ~ ( 8  I/Xw, 01s) (AI) 

for a test particle (which was initially prepared with velocity WO and in the spin state Iso)) 
to have at the time t the velocity w and to pass through a spin analyser with the axis 
along s. The expression (Al) is the well known Q-symbol of the statistical operator in the 
representation of coherent states .of the group SU(2) (Perelomov 1985). In order to make 
the formulae less cumbersome, we evaluate the function Q for the case y = 0. Under 
this condition one can prove that the reversible factor of the evolution of ;(w, t) can be 
separated from the irreversible factor: 

Q(w, S. t l ~ o ,  so, 0) = pou(w, tlw’, 0) PM(w’, S, tlwo, SO. 0) d3d. (A2) 

In this formula &(w, tlw’, 0) is the transition probability (propagator) for the ordinary 
Ornstein-Uhlenbeck process 

s 
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where df) = 2G2 [I -exp(-2vot)l. The propagator PM(w’. s, tlwo, SO, 0) for the reversible 
‘Magnus process’ has the following form: 

1 
4rr 

&(w’, s, rlw0, so, 0) = - exp [“‘:@I - [po(v’, tlwo, so. 0) + s .p (v ’ ,  tlvo, so, o)] 
(-44) 

where 

po(v‘, flwo. so. 0) = cc w ’ Inlm) [ (nlmlwo) coswl t 
n.1.m 

In these formulae the following notation is introduced 

e+ = el i iez 

Wl =VI- 

the latter being the wavefunction of the 3D quantum harmonic oscillator. 
The conditional probability (A2) can be used in the construction of a new kinetic model. 

By fixing the time in (AZ) (t = 7 si constant) and by multiplying the Q-function by a 
collision rate U, one obtains the function 

A(w, s Iw’. s ‘ )  = U Q(w, S,  tlw’, s’, 0). (A6) 
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Then one can use this function as a model collision kemel in the following kinetic equation: 

4 P(W s, t )  = -U p(v, s, t )  + 1 A(% s lo‘, s’) p ( d ,  s’, t )  d3u’ d2s’ (A7) 

where p(w, s, t )  is the P-symbol of the density matrix b(w, t )  (Perelomov 1985). The 
model collision kernel should be considered as a generalized Keilson-Storer kernel. The 
ordinary Keilson-Storer collision kernel (see, e.g., McCourt et al 1990) has the following 
form: 

AKS(W Io’) U POU(W, ~ I w ‘ ,  0) (A81 
where POU(W, tlw’, 0) is given by (A3). The Keilson-Storer collision kernel (AS) depends 
on two parameters: U and uor, whereas the kernel (A6) depends on three parameters: U, 
uor and u,r. The result of many weak collisions during the period [O. r ]  appears as the 
effect of one collision in (A7). One can make sure that the kernel (A6) satisfies the main 
condition for any adequate model kernel, namely the detailed balance relation 

A(w,  s lo’, 5’) W(W’) = A(w‘ ,  -s‘ Iw, - ~ ) W ( W ) .  (AS) 
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